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Inflation of the edge of chaos in a simple model of gene interaction networks
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We study a set of linearized catalytic reactions to model gene and protein interactions. The model is based
on experimentally motivated interaction network topologies and is designed to capture some key properties of
gene expression statistics. We impose a nonlinearity to the system by enforcing a boundary condition which
guarantees non-negative concentrations of chemical substances. System stability is quantified by maximum
Lyapunov exponents. We find that the non-negativity constraint leads to a drastic inflation of those regions in
parameter space where the Lyapunov exponent exactly vanishes. Within the model this finding can be fully
explained as a result of a symmetry breaking mechanism induced by the positivity constraint. The robustness
of this finding with respect to network topologies and the role of intrinsic molecular and external noise is
discussed. We argue that systems with inflated “edges of chaos” could be much more easily favored by natural

selection than systems where the Lyapunov exponent vanishes only on a parameter set of measure zero.
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I. INTRODUCTION

Most complex systems, living systems in particular, are
characterized by remarkable degrees of stability and at the
same time by a tremendous potential of flexibility and adapt-
ability. This has led some authors to define complex and
living systems as living at the “edge of chaos,” [1-4]
meaning—in a somewhat picturesque way—that it takes
only tiny changes in the system to move it from a stable and
regular mode into a chaotic phase where large portions of
phase space can get sampled. The concept is that systems at
the edge of chaos are especially well-suited for adaptation
and information processing in the sense that adaptability is
associated with the possibility of finding adequate new states
in possibly changed environments at very fast rates. It has
been argued that living systems at the edge of chaos would
get favored by natural selection, and that life has evolved
toward such a special region in parameter space [2]. In many
dynamical systems the edge of chaos is a very special set of
points in parameter space, often of measure zero, character-
ized by the system’s maximal Lyapunov exponent (MLE) \
passing through zero. It is not clear how systems can get
regulated toward (or have evolved toward) such a limited set
of critical points, even though some interesting ideas have
been proposed in this direction [5]. Even in the simplest
maps like the logistic map, the dynamics exactly at these
special points can become highly nontrivial [6].

It is evident that living systems have evolved toward
stable systems in stationary disequilibrium. Various authors
argue that a key principle of living systems is their ability to
replicate [7]; corresponding rate equations for molecular rep-
licators have been proposed for a long time, beginning with
Ref. [8]. As such, basic molecular reactions in living systems
(e.g., protein production or degradation) have to be autocata-
Iytic. If autocatalytic reactions are not balanced by degrada-
tion and/or thermostatic net-flow of substance to and from
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the system (like in a flow reactor), concentrations of molecu-
lar products will diverge in the replicator. A stationary state
can be established when production and decay (flow) rates of
intercellular molecules effectively balance each other [9,10].
In this sense stability (stationarity) provides a natural selec-
tion criterion. Cells can turn from a stable genetic dynamics
toward an unstable one, for example, through viral infec-
tions. Viral genetic material can cause the cell to produce a
viral protein at rates that eventually cause cell death. It is
intuitively clear that all mutations or variations of a cell that
turn a stable system into an unstable one eventually cause the
system to collapse thus favoring variations with stable dy-
namics in an evolutionary sense.

Catalytic reactions can be simply described by reaction
networks which quantify production and degradation rates.
Given current developments in genomics and proteomics
technology some facts about these networks become known.
By now there is some evidence that these (directed) networks
show scale-free (SF) topological organization [11,12]. On the
basis of a given molecular reaction topology [13] several
gene network models have been proposed [14—16]. In prin-
ciple two different approaches have been pursued: discrete
approaches, using Boolean networks [17], and continuous
approaches, using ordinary or stochastic differential equa-
tions [18-21]. Combinations of both have also been reported
[22,23]. Tt is remarkable that disordered recurrent networks,
whether modeled with Boolean, or S-state discrete recurrent
networks with piecewise linear equations [17] or mean-field
models of chemical master equations [24], all seem to share
three distinguished modes of operation: (i) a stable, (ii) a
critical, and (iii) a chaotic supercritical region. There is evi-
dence that this property could be generic or even universal. It
is important to ask about the minimum complexity of a
model showing these properties, in particular whether a lin-
ear ordinary differential equation (i.e., linear catalytic equa-
tions) would be sufficient [17].

Recently the importance of noise in molecular reaction
networks has been stressed and its relevance has been experi-
mentally demonstrated [25-27]. For example, the level of
noise can determine whether cells in Drosophila become epi-
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dermal or neural cells [28]. Further it was shown that low
reproduction rates of DNA and important regulatory mol-
ecules forbid one to neglect stochastic effects [29]. Intrinsic
noise, microscopic events within the cell, and extrinsic noise,
such as cell to cell variations, are now experimentally distin-
guishable [30], and stochastic differential equation models
have been proposed for regulatory transcription networks,
e.g., Ref. [31].

In this work we study a simple linear, noise driven dissi-
pative model for catalytic molecular reactions governing the
concentration levels of sets of molecular species. The non-
linearity is introduced through a natural restriction on the
domain of the process: concentrations are always non-
negative. We demonstrate that this nonlinearity changes the
“edge of chaos” from a point where A=0, to extended re-
gions of vanishing MLE. This inflation of the “edge of
chaos” in parameter-space is crucial for understanding how
systems displaying stable and nontrivial dynamics at the
same time can emerge by pure chance. The model offers a
full explanation for this inflation of the “edge of chaos.”

II. MODEL

We assume that gene-to-gene interactions can be modeled
as chemical reactions between proteins, mRNA, and other
nucleic material. Chemical rate equations considered in this
context are usually nonlinear such as the quadratic differen-
tial Michaelis-Menten equations [32], expressions for
enzyme-kinetics, or more general replicator dynamics, e.g.,
Ref. [33]. For the case of abundant substrate concentrations
these catalytic network equations have been linearized, e.g.,
in Refs. [34,35]. In this form linear models have been used
extensively for reverse engineering of gene networks, see,
e.g., Ref. [36].

Let us denote the concentrations of proteins « at time ¢ by
a vector p,(1), and those of RNA molecules i by x;(r). Col-
lecting both types of concentrations into a N-dimensional
vector y=(p,x) dynamics will be given by an appropriate
nonlinear equation, y,=F,(y). Boundedness of the system im-
plies the existence of a limit cycle or a fixed point. We as-
sume the existence of at least one fixed point y° and linearize
the system around it. Since (m)RNA usually directly codes
proteins it is natural to assume a linear dependence of a
perturbation of RNA concentration, Sx=x—2x", and the asso-
ciated protein perturbation vector, dp,==,C,;0x;, where C;
encodes the linear transcription of (m)RNA into a protein.
Near the fixed point the system becomes

d J J
=& = ((9—ij,-(y0) + % gFi(yO)Caj) &, (1)

dt ] o

now in terms of RNA concentrations only. By identifying the
terms in the bracket with an effective gene-to-gene interac-
tion matrix, A°, and noting that dx=x, we arrive at the sim-
plest linear model to capture all possible gene-to-gene inter-
actions,
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EA (x;—x7) (2)

Even though linear models of this kind are clearly an over-
simplification of reality they have frequently been used re-
cently [36,15,37]. Assume that interaction rates are not per-
fect constants but fluctuate according to Ag-(t) =A;;+§&;(1), for
example, through thermal noise or fluctuations of catalyst
(protein) levels. For simplicity let the &; be independent
identically distributed (iid) processes with zero mean. Re-
placing A° by A we get

i EA,,ﬁx + E(1) 8+ X &) dx,. 3)
JFi

Regardless of the distribution of &;;, and assuming that x will
converge to a reasonably stationary distribution, according
to the central limit theorem, the sum of the right-hand side,
7= 2+:&;(1) Ox;, yields a random number from a Gaussian
distribution, which we denote by 7, € N(0, ). This produces
additive noise terms. For simplicity we assume §&; also to be
Gaussian, i.e., (with a little abuse of notation) §&;
=¢,€N(0, 0), with the same variance &, Vi. This defines the
multiplicative noise terms.

A note on the fixed point x°. It has a natural interpretation
as the characteristic RNA concentrations around which ac-
tual levels oscillate during a cell cycle. x° can be measured
experimentally to a certain extent. In Fig. 1(a) we show ex-
perimental mRNA expression levels of the yeast genome
(S.cerevisae) over two cell cycles at 17 time points taken at
10 min intervals [38]. In this view x° could be defined as the
time-average over cell cycles, x=(x;()),. These experimen-
tal values for the components of x° can be fed directly into
the model. However, note that from a theoretical point of
view setting x°=0 also is a perfectly legitimate choice. In the
following the components of the fixed point x?>0 are taken
from the experimental yeast distribution [38,39], shown in
Fig. 1(b). We verified that our results are largely independent
of the particular choice of x°, in particular we have per-
formed all computations also with uniform and Gaussian
random vectors; we will explicitly demonstrate the case for
x°=0 below. The complete model thus reads

—x;= > Ag-(x]
J

with &EN(0, ) and 7,€N(0, o), the multiplicative and ad-
ditive noise components, respectively. Multiplicative and ad-
ditive noise have been interpreted as intrinsic and extrinsic
noise as used, e.g., in Ref. [30].

To interpret x as concentrations we have to introduce the
constraint

—x) + & (=) + 7, )

x(H)=0 Vir, (5)
which means that regardless of x; in Eq. (4), x;(f) can never
become negative.

A. Interaction matrix

Before solving the system we have to specify the interac-
tion network, i.e., the matrix elements (chemical rates) of A.
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FIG. 1. (Color online) (a) Ten randomly picked gene-expression
trajectories of yeast (S. cerevisiae) over two cell cycles [38], N
=6220. Fixed point values x° are defined as the time-averages of
gene expression levels (horizontal lines). (b) Distribution of station-
ary state values x°; inset: cumulative distribution. (c) Cumulative
distribution of gene expressions increments for the same data
(circles) for the numerical simulation of the evolution of gene ex-
pression data with only multiplicative noise only (boxes) and pure
additive Gaussian noise (triangles). Data is well-fitted by a ¢ Gauss-
ian (broken line).

It is obvious that the network is directed and weighted. Di-
agonal elements A; <0 are decay rates, off-diagonal rates A;;
can be positive or negative corresponding to activation or
inhibition. Not all products can interact with each other, i.e.,
a large number of matrix elements will be zero; most rates
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are presently not available from experiments. We thus model
A as a sparse random matrix in the following way. Using
terminology from network theory the “degree” k; of product
i is defined as the number of products that can be regulated
by product i. The class of interaction networks can now be
specified by the “degree distribution.” There is evidence that
protein networks [12] and metabolic networks [13] are scale-
free (SF) networks p(k) ~ k™7, characterized by a degree dis-
tribution with average degree (k)>4, and an exponent y
~2.2. Below we generate SF networks and contrast them to
random networks, i.e., Erdos-Renyi graphs (ER) [40] with
the same average degree. If the number of nonzero rates in A
is denoted by L, the average connectivity is (k)=L/N. Once
it is decided which products interact with each other, i.e.,
AiﬂﬁO, the actual rates have to be fixed. We assume these
being Gaussian, A;;€N(0,0,). This is supported experimen-
tally, e.g., by Ref. [37], where a least-squares fit of synthetic
gene network models to real data indicates that the normal
distribution of interaction weights provides the best results.
In the following we take the (negative) decay rates A;; con-
stant and identical for all i.

Note that o, and the decay rates A; are not independent
variables but that the quotient

D=-—+ (6)
04

governs the characteristic behavior of the dynamics. o4 can
be absorbed into a redefinition of the time scale and the noise
amplitudes. Thus without loss of generality we set o,=1 for
all simulations. For later use we call a node i, on, when its
concentration value x;(f)>0 and off otherwise, and assign
N,, and N, to the number of on and off nodes, respectively,
i.e, N=N,,+ N,

B. Stability

If we ignore for a moment the positivity condition, Eq.
(5), and the stochastic terms in Eq. (4), the stability of the
system is dominated by the largest real part of the eigenval-
ues of the interaction matrix A. If there are no non-negative
real parts of the eigenvalues, the system will be asymptoti-
cally stable. If the distribution of off-diagonal elements in A
is normal [37] with variance o'i, the eigenvalue spectrum
is—according to a result from random matrix theory—a
circle in the complex plane (Girko’s circular law) [42]. For a
fully connected matrix, with L=N? nonzero entries in A the
radius of this circle p is equal to the product of the standard
deviation and square root of the system size N. For nonfully
connected networks, L <<NZ, the radius is given by (see, e.g.,
Ref. [43])

p=ANLIN = 04 (k). (7)

If the diagonal elements of the random matrix are from a
zero-mean distribution, Girko’s circle is centered at the ori-
gin of the complex plane. In our case we have A;;<<0 and the
center of the circle in the complex plane will be shifted to the
position (=A;;,0), see, e.g., Ref. [44,45].

A simple measure for system stability is the maximal
Lyapunov exponent
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1 ( x(2) = x' (1) ) ®

M o) —x o)

t—o I

where x'(z) results from a small perturbation in the initial
condition, ||x(0)—x'(0)||<< 1. For the system without the posi-
tivity condition A\ can be related to p,

N(KY) ~ p((K)) + Ay = o (\(k) = D), 9)

where A;; is the spectrum shift discussed above.

For the full model with the positivity condition and the
fixed point x?>0, we hypothesize the following scenario:
For A <0, i.e., when (k) is sufficiently small, the fixed point
x¥ is stable and all trajectories x; will be normally distributed
around x°. Suppose that the average noise amplitude per link
is fixed (f,-j is an iid) then each added link will add to the
noise level in the system. For iid processes with zero mean
we therefore can expect the variance of the distribution of x
to grow linearly with (k), i.e., o%xock, as long as A <0. Here
Sx=x-x and 0% = /N2 (8x;~ &%), being the mean-square
error of dx, with dx=268x;/N. Let us look at the number of
nodes that are on, N,,, or off, Ny Off nodes are those
associated with the part of the distribution spread over the
negative x values. For the sake of simplicity we picture
the x values to be distributed around )_COEEIJC?/N >0, the
mean averaged fixed point concentration. Therefore one
can roughly estimate N,, in the A<<0 phase, to be
proportional to one minus the integral over the part
of the distribution associated with the off nodes, i.e.,
N,/ N=[1+erf(cx’/ V’@)]/Z for some constant c. For a bet-
ter estimate one would additionally average over the distri-
bution of x. However, we clearly get N,,,— N as (k) —0. On
the other hand this approximation predicts N,,~N/2 for
large (k). Since this approximation was derived for small (k),
i.e., A<0, we need an alternative way to show that about
half the nodes remain on for large (k), i.e., for A > 0. For this
we look at the probability P(x;>0) that the concentration x;
for a node i is growing. To compute it we remember that
nonzero entries |A ,-j| >0 of matrix A are drawn from a Gauss-
ian distribution and use the identity

f e~71/2b1 =35/2b
dz)dzy 8w = a\2) = ay2) ——"—
N27b | N27h,

e—w2/2(hla%+b2a%)

= — (10)
\2m(bai + bya3)
with the equation of motion, Eq. (4), to compute

P> 0)= Jerfe| =————1. (1)
sz{jzlAi]«|>0} &

with  erfc=1-erf. Approximating the expression
EU:‘A[_j‘>O}5)c_]2-%<k)(o%x+ &%), which is justified when aver-
ages and variances of Ox restricted to the row-wise nonzero
entries in A are sufficiently similar, we can write
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PG> 0) ~ - f( D % ) (12)
X; = —erfc| ——F————.
2 V2(k) N oy, + &%

For large (k) this expression approaches P(x;>0)~ 1/2 and
one can conclude that on average the fraction of decreasing
or increasing concentrations both amount to one-half,
N,,/N~1/2.

Note that every trajectory x; that is stopped at zero prac-
tically reduces the system size, as the dynamics of the re-
maining system is equivalent to deleting the ith column and
row in A together with the ith entry in vector x. N,, is there-
fore a measure of the effective system size. Associated with
N, there is an effective number of links L,,=LN>,/N* and
an effective connectivity

(kon) = (k)Now/N . (13)

Inserting the effective connectivity into Eq. (9) gives an ap-
proximate formula for the effective Lyapunov exponent

N~ a4(\(k,n) = D). (14)

Since large (k) implies N,,~ N/2 this leads to the high con-
nectivity approximation

)\~0A(\/§—D). (15)

These arguments show that for (k) <D? we may expect Eq.
(9) to hold while for sufficiently large (k) (we return to this
point later) the Lyapunov exponent \ will start to behave like
Eq. (15). This leads to two critical values for (k). The lower
critical connectivity (k). ,=D? indicating the point where \
=0 for the low-connectivity approximation, Eq. (9), and the
upper critical connectivity (k)!  =2D* which is the point
where N=0 for the high-connectivity approximation, Eq.

(15).

C. Note on multiplicative noise

The diagonal component of Eq. (4) reminds of the sto-
chastic differential equation,

a%x =f(x) + g(x) &) + 5(1), (16)

with f=—A;x and g(x)=x. This Langevin process has been
exactly solved—ignoring the positivity constraint—[41], the
solution being a g-exponential, p(x)~[1+(g—1)Bx?]"1-9,
with B=(-A,;+5/2)/0, and (1—-¢)~! the asymptotic power
exponent. In simulations we have shown that this result con-
tinues to hold when the positivity condition is taken into
consideration as well. In Fig. 1(c) we show experimental
data confirming the power-law aspect of mRNA levels from
the yeast genome data [38,39]. Here Ax;(r) =x,(r)—x,(t—1) is
the difference in gene expression levels between two con-
secutive measurements; P(>Ax) is the cumulative distribu-
tion, for all i and ¢. In the same plot we show results of a
numerical simulation of the model, Eq. (4), with the N
=6000 ER topology for A at {(k)=20, for the two cases: first,
=0 and o>0 (Gaussian noise model), and second >0
and o=0 (multiplicative noise model). Data is fitted with a
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g-exponential fit (broken line), with an effective g y,=1.55.
(Note, the cumulative probability distribution function of a ¢
exponential is a g exponential, with g.ym.)

Further note a potential stabilizing role of multiplicative
noise [46]. Consider the one-dimensional case of our model,

d
Exza(x—x0)+§x+ 7, (17)

with £EN(0,5) and 7€ N(0, o). The evolution of a pertur-
bation Ox thus follows

d& Ox + &0 (18)
—ox=daox X,
dt

with the solution
Sx(t) = Sx(0)el+-T DT dEl), (19)

The Lyapunov exponent is proportional to a—a>/2 showing
that the system can be stable even for positive a.

III. RESULTS

We numerically solve Eq. (4) with the positivity condition
Eq. (4) and compare with the above predictions. We generate
SF and ER networks of sizes N=200, 500, 1000. To vary
(k) we adjusted the number of nonzero rates L in A. For SF
networks the scaling exponent was fixed to y=2.2. All of the
following results are averages over 50 random realizations of
networks for a given parameter set. The Lyapunov exponents
were computed from 1000 time steps, after discarding the
first 200 steps. Numerical integration was done with a time
increment of dr=0.1. x° was chosen from the experimental
distribution of Fig. 1(b). We did not observe noteworthy
changes of results when using uniform or Gaussian distribu-
tions. In Fig. 2 we show the dynamics of the model, Eq. (4),
for five randomly selected trajectories, in three regions of
(k), one corresponding to A <0 (a), one associated to critical
dynamics at A=0 (b), and one for A >0 (c). In Fig. 2(a) the
trajectories are in the vicinity of their fixed point x, and stay
there even after a significant perturbation (at time 7=1000).
In Fig. 2(b) trajectories show oscillatory behavior. After per-
turbing with the same constant vector x” as in (a) the trajec-
tories continue oscillating, however, around a new steady
state. Exponential divergence in the chaotic region is shown
in Fig. 2(c).

In Fig. 3 the solution for A for the ER network as a func-
tion of (k), with (triangles) and without (boxes) positivity
condition, is given. The corresponding theoretical predic-
tions, Egs. (9) and (15), are drawn as solid and broken lines,
respectively. The case without positivity condition is com-
pletely explained by theory over the entire range of (k) by
Eq. (9). In the case with the constraint for small (k), Eq. (9)
is valid, while the asymptote follows Eq. (15), as expected.
The main finding of this paper is that within a (k) window
between about (k)_., and (k). a plateau forms where \
practically vanishes (up to a precision of |\| <0.005).

The stability of the system for different network topolo-
gies, sizes, and various noise components is shown in Fig. 4.
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FIG. 2. (Color online) Time series of five randomly selected
trajectories [numerical solutions of Eq. (4)] for the regions (a)
N <0, (b) at the A=0 plateau, and (c) A>0. N=500, o0=5=0.1, and
D=4. These trajectories have been artificially perturbed by an
additive shift x” (depicted with the arrows for one trajectory).

Figure 4(a) indicates that both network size and degree dis-
tribution are only slightly influencing the width of the pla-
teau. While in the (k) — N region there is no significant dif-
ference in system stability, the low connectivity region

0.6
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FIG. 3. (Color online) Maximum Lyapunov exponents \ as a
function of average degree (k), averaged over 50 realizations for ER
networks. Simulations are shown without positivity condition for
noise o=0=0.1 (squares) and without noise o=a=0 (circles). The
influence of the positivity condition on forming a plateau is dem-
onstrated with noise o==0.1 (triangles). The solid and broken
lines are Egs. (9) and (15). Inset: plateau for the case x?zO, with
noise o=0=0.1. In all cases N=500, D=4.
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FIG. 4. (Color online) Lyapunov exponents for the same
parameters as in Fig. 3 for (a) different network types and sizes
N=200, 500, 1000, (b) noise effects for multiplicative noise
(7=0.1 and 0=0), additive noise (=0 and o=0.1), compared to
the deterministic process (=0o=0) without the positivity condition.
(c) N\ compared to the number of inactive nodes as a function of
connectivity. ER, N=1000, D=4, and o=0=0.1.

shows a size effect on the A=0 plateau. The effect of net-
work topology is relatively small, the curve pertaining to SF
always being slightly below the ER networks, see Fig. 4(a).
While the width of the plateau is always wider for the ran-
dom distribution of links, in the (k) — 0 region, the system is
more stable (smaller \) for SF networks. For higher connec-

tivity regions ((k)=(k):.) the difference between random
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and scale-free networks becomes numerically indistinguish-
able. Figure 4(b) shows the influence of pure multiplicative
(7>0,0=0) and pure additive noise (6=0,0>0) on the
plateau width, compared to the deterministic process,
o=o0=0. With multiplicative noise the plateau widens, while
additive noise hardly shows any effect (when compared to
the deterministic process without the positivity condition).
Plateau widths are collected in Table 1. In Fig. 4(c) the num-
ber of inactive nodes is shown with A, again as a function
of (k). Finally in Fig. 5, N((k)) is shown for four values of
D. The formation of the plateau appears in the interval
[D?,2D?], i.e., between the critical connectivities (k). and

<k>:rit'

IV. DISCUSSION

How can the formation of the plateau for the critical re-
gion at A=0 be understood? As long as A <0 it is only the
noise that can drive concentrations x; toward the boundary.
However, the boundary will not be absorbing since the fixed
point x¥ is still attractive, and the concentration has a non-
zero probability to become positive again. Due to Eq. (9), for
(ky=D? the first trajectories can be expected to become un-
stable and are either driven toward zero or toward infinity.
Trajectories that are driven toward zero are stopped there
which stabilizes the system and A ~ 0 is reattained. But what
about trajectories that are driven toward infinity? Why
should they be stopped? To understand this we look at
P(Z;x;>0), the probability that the sum over all concentra-
tions is increasing. Using Eq. (10) we can derive

DZ S,
\/22 > 8

1
P(E x> 0) = Eerfc

i {/‘:\Aij\>0}
1 N ox
~ ~erfe| D\| —~———= ], (20)
2 2k o + &7

using the same approximation as above. Due to the symme-
try of the model, dx~0, as long as no trajectory has been
stopped at zero. Now, since decreasing trajectories are
stopped at zero this symmetry breaking causes dx>0. Once
ox>¢€>0, for any constant ¢, it follows that if N is suffi-
ciently large compared to (k) the probability for the sum of
the concentrations to grow vanishes. This indicates that with
a probability of almost one the trajectories diverging to large
values have to be balanced by the decreasing ones. One can
therefore expect that—on average—every trajectory that is
driven toward infinity by the linear dynamics requires a de-
creasing counterpart to do so. As a consequence, a growing
trajectory gets stopped when the balancing decreasing trajec-
tory is stopped at zero. This mechanism stabilizes the system
as long as there are decreasing trajectories that can be
stopped and thus may render a stabilizing effect. When there
are no more trajectories left to be stopped, which happens
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TABLE 1. Zero-\ plateau widths A for an ER network, with N=500. A is defined as the region of
connectivity where |\| <0.005. For the situation of variable multiplicative noise the additive noise was fixed
to 0=0.1, for the variable additive noise, 0=0.1. Cases for different D are shown. For variable multiplicative
noise levels the plateau grows up to a noise amplitude of ¢~ 0.1. Very high noise levels of either kind destroy

the plateau (not shown).

D\ (0=0.1) 0 0.001 0.005 0.01 0.05 0.1 0.2 0.5 0.7
2 4 3 4 5 5 5 4 2 2
4 15 16 16 17 18 19 13 12 11
6 35 36 36 37 37 36 30 20 22
D\o(a=0.1) 0 0.001 0.005 0.01 0.05 0.1 0.2 0.5 0.7
2 5 6 5 4 5 5 4 4 4
4 20 20 19 18 18 19 19 18 19
6 37 36 37 36 35 36 35 35 35

when about Ny ~N/2 trajectories have hit zero, A ~0 can-
not be maintained by stopping processes. From that point on
N >0 starts to grow again as a function of (k).

In other words, the formation of the critical A=0 plateau
can be seen as a selection mechanism in which the most
active reactions (largest reaction rates in A) will be directly
or indirectly stopped by the boundary, which drives the sys-
tem to a critical state at A=0. The end of the plateau is
characterized by the point where no trajectories are available
for stopping anymore. At this point the role of parameter D
becomes clear. It controls the size and the position of the
plateau. The switching in the behavior of N between Eq. (9)
and Eq. (15) has the characteristics of a phase transition
where (k) passes from (k). .=D? to (k)!,=2D* while the
critical parameter A=0 remains at its critical value. These
theoretical arguments allow to understand the basic mecha-
nism of the effect of the nonlinear constraint, however, more
work is needed to fully understand the precise underlying
mathematical details. For example, the presented arguments
rely on x>0, and numerical results indicate some devia-
tions in the details of the formation of the plateau for the
special fixed point, x°=0.

"0 50 100 150

K

250

FIG. 5. (Color online) Lyapunov exponents for four different
values of D. The dependence of the critical region and the width of
the plateau is seen. Lines correspond to Eqgs. (9) and (15).

To summarize, we have studied the stability of a simple
linear model of catalytic reaction equations for cellular prod-
ucts such as mRNA molecules or proteins. The system is
driven by intrinsic molecular noise (multiplicative) and ex-
ternal (additive) noise. We show that the model captures ba-
sic empirical features, such as the fat tail distribution of con-
centration changes. Imposing an intuitively natural constraint
on the system, (non-negativity of concentrations) we observe
the formation of a plateau of vanishing Lyapunov exponents
in terms of the connectivities of interaction matrices. The
dynamical stability of concentrations in catalytic regulatory
networks, given in Eq. (4), has three extended phases in pa-
rameter space (here connectivity). In the first phase the sys-
tem is asymptotically stable, \ is negative. After perturba-
tions in this phase the system relaxes to its fixed point. The
main finding of this work is the existence of a second, criti-
cal phase, where A ~ 0 extends over a region of size D?. This
is in marked contrast to the dynamics of many other nonlin-
ear systems, which show criticality at a singular set of points.
The emergence of this phase can be fully understood within
the model. At sufficiently high connectivities some products
reach criticality in the linear model and those products with
the largest reaction rates will—on average—start to diverge.
Concentrations driven toward zero will be stopped at the
boundary. Diverging concentrations are coupled with decay-
ing concentrations and will be stopped indirectly by the
boundary via stopping processes affecting their associated
decaying concentrations. The stopping-process stabilizes the
system at criticality as long as there are potentially decaying
concentrations left to be stopped at zero. In the third phase,
defined by A>0, the system is dynamically unstable and
concentration levels are diverging. The existence of these
three phases corresponds perfectly with the observation
made in Refs. [17,24] that these three phases might be uni-
versal for a wide class of recurrent networks.

Technically, we discussed the dependence of the A=0 pla-
teau on two network topologies, ER and SF. A remarkably
small influence of the topology on the plateau was found. We
found that multiplicative noise influences the size of the pla-
teau while additive noise shows practically no effect.

In Ref. [47] it was noted that neural networks can perform
most complex computations if the dynamics of random
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threshold gate networks is at the critical boundary between
the ordered and chaotic regime. If we interpret gene-
regulatory networks as computing devices performing hun-
dreds of optimization problems simultaneously, it is plausible
that evolution would have selected among the most efficient
variations—working at the edge of chaos.

PHYSICAL REVIEW E 77, 061917 (2008)
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